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FOREWORD

The Energy Efficient Engine Component Development and Integration program is

being conducted under parallel National Aeronautics and Space Administration
contracts with Pratt & Whitney and General Electric Company. The overall

project is under the direction of Mr. Carl C. Ciepluch. The Pratt & Whitney
effort is under contract NAS3-20646, and Mr. Edward Meleason is the iIASA

Project Engineer responsible for the portion of the project described in this

report. Mr. David E. Gray is Hanager of the Energy Efficient Engine Proqram at
Pratt & Whitney. This report was prepared by Mr. D. C. Howe of Pratt & Whitney.
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SECTION1.0

SUMMARY

The Control Preliminary Definition Program was conducted to define a
preliminary control system concept as a part of the Energy Efficient Engine
program. The program was limited to a conceptual definition of a full
authority digital electronic control system incorporating the technology which
is projected to exist by 1990. System requirements were determined and a
control system was conceptually defined to these requirements. Areas were
identified where technological development would be most productive toward
realization of the system concept. A plan was established for im_lementin_ the
identified technology features, including a control technology
demonstration.

Three subcontractors assisted Pratt & Whitney in this effort: two were control
vendors (Hamilton Standard Division and Bendix) and one, a pumpvendor
(Chandler Evans). Their input to the study included size, weight, cost, aqd
reliability information and technology readiness information required for
selecting the principal and backup control systems.

A significant element of this program was a study of the potential benefits of
closed-loop active clearance control and clearance sensors that would enable
the realization of these benefits. Study results indicated that the fluidic
and fnicrowave clearance sensor concepts were the most likely candidates for
application to advanced engine high-pressure compressor, high-pressure turbine
and low-pressure turbine components. Potential fuel burn benefits of ,Jp to one
percent are indicated for a long-range 440 passenger trijet utilizinq
closed-loop active clearance control in the high-pressure turbine only. This
includes the effects of deterioration recovery over a 4000 cycle engine
operating period.



SECTION2.0

INTRODUCTION

The National Aeronautics and SpaceAdministration has the objective of
improving the energy efficiency of future United States commercial aircraft so
that substantial savings in fuel can be realized. Towardthis objective, NASA
established the Energy Efficient Engine ComponentDevelopmentand Integration
program in 1978 under contract NAS3-20646.Minimumgoals for this program are
a 12 percent reduction in thrust specific fuel consumption (TSFC) and a 5
percent reduction in direct operating costs (DOC)comparedto the Pratt &
Whitney JTgD-7Aengine. In addition, FARPart 36 (1978) noise rules and
EPA-proposed1981 exhaust emissions standards must be met.

The Energy Efficient Engine ComponentDevelopmentand Integration program is
based on the results of the completed Energy Efficient Enaine Preliminary
Design and Integration Studies (Ref. I). Through the extension of the
technology base developed under this early program, the Energy Efficient
Engine ComponentDevelopmentand Integration program will develop and
demonstrate the technology for achieving higher overall efficiency
(thermodynamic and propulsion) in future environmentally acceptable turbofan
engines. To meet these program objectives, the current program consists of the
following two tasks:

o Task 1 -- Flight Propulsion System analysis, design, and integration

o Task 2 -- componentanalysis, design and development.

More specifically, Task l provides for the preliminary design of a flight
propulsion system based on various iterative analyses and design updates and
the preliminary definition of engine control systems.

Three basic control systems were defined: a high technology system, a moderate
technology system, and a conservative technology system. The high technoloqy
system, the most advanced and principal system, requires the maximum
technological development. The other two systems, requiring lesser
technologies, provide backup for the principal system in the event that the
neededtechnology programs are not pursued. The backup controls, which
sacrifice performance but are fully functional, furnish flexibility in
establishing technology development priorities.

A full authority, digital electronic system was the choice for the high
technology control. The required advanced technology, aggressively projected
to be available by approximately 1990, provides the maximumimprovement in
engine performance and life, simplifies engine operation, and minimizes system
size, weight, and cost. A study was conducted to investigate the benefits
associated with expanding the control system capability to include a
closed-loop active clearance control system and the definition of suitable
clearance sensors. This study effort is discussed in Section 4.0

The control program was limited to conceptual definitions, and no detailed
system design or analysis was conducted. Pratt & Whitney was assisted by
Hamilton Standard Division (HSD)and Bendix--control vendors--and by Chandler
Evans (Ceco)--a fuel-pump vendor.

Abbreviations used in this report are defined in Appendix A.



SECTION3.0

INITIAL CONTROLSYSTEMDEFINITION

3.1 DEFINITION OF REQUIREMENTS

3.1.1 Engine Definition

The Energy Efficient Engine, as defined for the control system definition, is
a twin-spool, high-bypass fan, mixed-exhaust configuration with an integrated

engine-nacelle structure. The combustor is a staged, high efficiency type
burner, utilizing aerating simplex nozzles for the pilot fuel flow and simplex

nozzles with carburetor tubes for the main flow. To preclude nozzle coking,

the main nozzles are purged with nitrogen when the main flow is turned off. An

active clearance control system is employed in the high pressure compressor

and in the high pressure and low pressure turbines.

The engine fuel pump and alternator are driven from a gearbox located on the
core. Control electronics can be mounted in the nacelle or in the core area.

There are four stages of variable vanes and a set of starting bleeds in the

high pressure compressor, and there is also a set of intercompressor bleeds. A
fan-air thrust reverser is incorporated in the nacelle.

Table 3-I shows the estimated ranges utilized in this study for the control

parameters,and Table 3-11 provides a more complete definition of fuel handlinq
requirements. The values presented are preliminary and should he reviewed in
the future to allow for engine evolution and unforseen factors.

TABLE 3-I
ESTIMATED RANGES FOR CONTROL PARAMETERS

Parameter Maximum Minimum

Inlet T_mp.
Ambient Press. (abs)

NL
NH
Burner Press. (abs)
Turbine Gas Temp.

Turbine Blade Temp.
Fuel Flow
SVA F/B
Bleed F/B

356oK (640oR)
104 kPa (15 Ibf/in.2)

4000 rpm

13,500 rpm
34500 kPa (500 Ibf/in.2)

1724OK (3100OR)
1362oK (2450°R)

6525 kg/hr (14500 Ibm/hr)
TBD

Open

234OK (520OR)
ii.0 kPa (1.6 Ibf/in.2)

300 rpm

500 rpm
13.8 kPa (2 Ibf/in. 2)
Ambient

Ambient

112.5 kg/hr (250 Ibm/hr)
TBD
Closed



TABLE3-II
FUELHANDLINGREQUIREMENTS

NH Manifold Pre_s. Fuel Flow
r._ kPa (Ibf/in. L) kg/hr (Ibm/hr) Comments

13,300 10,350 (1500) 65 (14,500)* Max. Fuel Flow

9,165 586 (85) 450 (1000)* Idle SLS

9,532 518 (75) 315 (700)* Min. SS Fuel Flow

(idle descent)

3,500 35 (5) 198 (440) SLS Lightoff

112 (250) Min. Flow

(altitude relight)

*Note: Bleed and actuators require a transient fuel flow of 990 kg/hr
(2,200 Ibm/hr) for one second.

Control system component locations and ambient temperatures with additional

parametric information are provided in Appendix D, Figures D-I and D-2

respectively. Engine station notations are presented in Figure D-3.

The range of control parameters for this study was estimated by means of

engine performance tables and the engine operating envelope shown in Figure
3.l-l.
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parameters were based on the operating envelope and enqine

performance tables.

3.1.2 Control Functions

The major control functions or outputs are:

I) Fuel Flow

a. Fuel valve(s) (modulated) and/or fuel pump(s) (modulated)

b. Purge dump valve (discrete)

c. Secondary transfer valves (discrete)

2) Control of engine bleeds

a. Intercompressor bleed (discrete or modulated)
b. Start bleed (discrete)
c. Active clearance control valve (discrete)

3) Control of high pressure compressor variable geometry (modulated)

4) Control of two position thrust reverser



3.1.3 Operating Requirements

I) Allow the engine to perform to its potential within the bounds of enaine
limitations:

o Prevent compressor stall

o Prevent excessive temperature levels during transients

o Maintain stable engine operation between engine idle and maximum power

2) Provide engine rating for all flight conditions

3) Prevent catastrophic engine failure if the control fails:

"0

0

0

0

Synthesize lost sensors

Derate performance
Failsafe direction failures

Shut down engine

3.1.4 Control Inputs

I. Power Lever Angle

2. Discretes (Air packs, ground/flight idle, TBD)
3. ARINC data

4. Low Rotor RPM (NL)

5. High Rotor RPM (_H)

6. Fan Inlet Temperature (T2)

7. Fan Inlet Total Pressure (PT2)
8. Ambient Static Pressure (PSO)

9. Burner Pressure (PS3) or (Pb)

lO. Turbine Inlet Temperature (T4. l)
If. Fuel Valve Feedback

12. Stator Vane Feedback

13. Reverser Position (discretes)

14. Intercompressor Bleeds (discrete or modulated)

3.1.5 Fuel Metering Requirements

The Energy Efficient Engine presents a unique set of fuel metering

requirements for the control system. The low emissions energy efficient burner

requires two axially separated, independently metered fuel flows: a pilot flow
and a main flow. The split between pilot fuel flow and main fuel flow is based

on fuel-air ratio and not upon the conventional fuel Flow rate. In addition,

because of burner stability requirements, the flow split may vary between

transient and steady state engine operation. Engine start and idle power

settings are on pilot flow only; engine power settings above idle are on pilot
plus main flow.



Because the burner nozzles are axially separated, complete fuel atomization by
the main nozzles without assistance from a high velocity pilot spray is
necessary and this requires aerating simplex pilot nozzles, simplex main
nozzles with carburetor tubes, and a flow schedule shift from pilot flow to
pilot flow plus main flow at a constant total fuel flow. The flow schedule
shift is illustrated by Figure 3.1-2. A schedule shift with variable
percentage split between pilot and main nozzles is well within the
capabilities of an electronic control, but would tax the capabilities of a
hydromechanical control. The pilot flow system incorporates a bypassinq and
dump valve which recirculates pilot fuel to pump interstage and drains the
pilot fuel nozzle manifold to an ecology tank during cutoff.

To avoid coking of fuel in the main nozzle and support assembly, all fuel must
be purged from the nozzle and assembly when the main fuel is not flowing. This
purging is accomplished with nitrogen. For size and weight reduction, the
purge is combined with the main nozzle shutoff function in one valve, with the
nitrogen supplying the pressure. Eight of these valves, mounted on the burner
bulkhead, perform the main nozzle shutoff and purge function.

The lines supplying fuel to the main nozzles are shrouded and air cooled to
prevent varnishing and coking in these fuel lines, thus eliminatinq the need
for a fuel recirculation manifold and additional lines.

3.2 EFFECTORS AND ACTUATORS

3.2.1 Geometry Actuation

Geometry actuation requirements for the engine were specified on the basis of
cost, weight, and reliability tradeoffs. Actuation of compressor bleeds and
stator vanes and a thrust reverser mechanism are required. Control system
requirements for these functions are presented in the following sections.

3.2.2 Bleed Actuation

The intercompressor (station 2.5) bleed is operated by means of a sinnle

two-position fuel hydraulic piston. The simple two-position bleed is

acceptable because engine thrust is governed as a function of N! speed,
which is relatively unaffected by intercompressor bleed. Actuat#on is obtained

by discrete electrical signal from the electronic control to the servo valves
that control the pressure to the hydraulic actuator. The bleed is designed to

fail open, protecting the engine from low pressure compressor stall and idle

and during decelerations. Fail-open operation results in a thrust penalty at

high power operation on hot days.

If future engine operation indicates that modulated bleeds are required to
avoid undesirable thrust transients during bleed operation, the control system

can be readily revised to accommodate this requirement. A modulated bleed

control loop would be similar to the SVA loop and would utilize the same

technology.
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The high pressure compressor (start) bleeds are located at the lOth stage, and
are used only during engine starts. There are four separate two-position
pneumatically actuated, solenoid activated bleeds that operate by discrete
electrical signals from the electronic control. All four bleeds can be
operated simultaneously or individually to satisfy engine start requirements.
The bleeds are designed to fail closed on loss of electrical power.

3.2.3 Stator Vane Activation

The high-pressure compressor Inlet Guide Vane and the first three stages of
stator vanes are variable and are actuated by a single fuel hydraulic piston
through a system of links and levers. Control of stator vanes is fully
modulated and controlled by an electrical signal from the electronic control.
Feedbackof vane position is discussed in Section 7.1.I0.7 of this report. The
stator vanes fail open in the event of loss of signal or actuator failure.
This failure modeensures takeoff thrust, but does not protect against ennine
stall below maximumclimb power.

3.2.4 Thrust Reverser Actuation

The thrust reverser is actuated by a single air motor driving a ball screw
system. Control signals for both forward and reverse are provided by the
electronic control. Twodiscrete feedback signals (fully retracted and fully
deployed) will be provided to the control system. The system will be designed
to movethe reverser to the fully retracted position in the event of loss of
signal.

3.2.5 Active Clearance Control - OpenLoop

The active clearance control (ACC) system varies blade tip clearances in the
rear of the high pressure compressor and in the high pressure and low _ressure
turbines. For the purposes of the control preliminary definition, control of
the ACCsystem is by discrete on-off signals to two air control valves. One
valve controls fan air to the high pressure compressor case, and one valve
transfers between lOth stage and 15th stage high pressure compressor air to
the high pressure and low pressure turbines. Although the ACCsystem is open
loop, clearance measurementtechnology compatible with electronic controls is
defined in anticipation of future modulated ACCsystems.

3.3 CONTROLDEFINITIONMETHODOLOGY

A control system is defined by a combination of analysis, cost and weight
tradeoffs, logic, and engineering judgement. The conceptual definition of the
engine control system has been organized in a manner to provide documentation
of the analytical (tradeoff) logic elements and to minimize the intuitive
element.

This organization consists of a decision logic diagram with decision matrices
for selecting technology for all major componentsof the system. The logic
diagram and matrices for the selection of system technology are presented in
Appendix B. The logic diagram is an orderly documentation of the process for
selecting the technology to implement the various _lements of the control
system. The decision matrices document the candidate technologies and rate
them against Factors that are significant to the performance of the control
system.



Scoring for the matrix is based on the product of an arbitrary 1 to 4
performance rating factor and weighting factors that vary according to the
technology under consideration. The selection of the overall system depends on
the availability of technology and manyother interacting factors such as
component location, fire safety, signal transmission, newfuel specifications,
electro-magnetic interference (EMI), and judgement based upon experience. For
the final system decision, candidate control systems were considered with
respect to these factors.

In defining the engine control system, certain basic assumptions and ground
rules were established. These assumptions and ground rules were consistent
with the conceptual definition restriction.

A. The main control element would be a full-authority, digital electronics

box that utilizes electronic technology projected to be available in the
late 1980's.

B. Condition monitoring would not be considered as an integral part of the
control system.

C. Airframe integration would not be studied as a part of this control
conceptional definition. A digital data link for communication with

airframe and a future separate condition monitoring system are to be
assumed.

D. Although the engine design will have open loop ACC, grovisions are to be

made in the control system concept for closed loop control, implying a

need for proximity sensing technology.

E. Optical sensing and fiber optic signal transmission and interfacing with
aircraft would be considered.

F. A detailed analysis or design of the control or fuel handling systems
would not be performed. No control algorithms or software would be

developed.

G* The subject of fire protection for the control system would be considered

but not studied in depth--it should be noted that fire protection would be

an integral part of a detailed system design.

H. Compressor surge bleeds would be assumed to require discrete on-off

signals based on compressor surge protection requirements without takinn

into account special features such as adjusting surge bleeds accordinQ to

service bleed useage, or adjusting surge margin between accelerations and

steady state. These features can be implemented within the digital logic

and pose no particular control problem.

I . Active clearance control would be assumed to require discrete signals to
transfer and/or shutoff valves. Operation of the system to provide mini_qum

clearance at altitude cruise conditions was assumed. However, ACC durin_

climbout can be provided with control logic with no effect on the control
system.

lO



3.4 SYSTEM SELECTION

Three control systems, high technology, moderate technology, and conservative

technology, are presented, providing the program manager with guidance in

trading off performance vs. technology investment. As expected, the most

desirable system in terms of performance, weight, and production cost requires

the most technology development.

3.4.1 Control Philosophy

3.4.1.1 Control Mode

Engine power above idle will be set by NL because NL correlates well with
thrust and is relatively insensitive to bleed and SVA effects. The control

prevents NH speed variations associated with horsepower extraction by

controlling NH at idle. Structural limitation control for high rotor speed,

pressure, and turbine inlet temperature is effected by means of topping loops.

Compressor and burner stability is maintained during transients by accel and
decel schedules that limit fuel flow.

A simplified block diagram and a functional block diagram of the engine

control system are presented in Appendix D, Figures D-4 and D-5 respectively.
The functional block diagram (Figure D-5) shows that the basic mode of

operation consists of fuel flow (Wfe) being calculated as the integral of a
control loop error chosen according to the "select low" and "select high"

logic. Thus, the control is isochronous: the selected control loop error is
driven to a value of zero to obtain steady state conditions.

3.4.1.2 Electronic Unit Design

The control logic will be implemented with a single-channel, full-authority

digital control with selective redundancy of critical components to provide

the optimal balance between MTBF, cost, weight, and maintainability. The use

of a single-channel full authority digital control was established as a ground
rule for the study, Section 5. Where possible, fiber optics will be used to
eliminate EMI, to increase reliability, and to decrease cost and weight.

Candidates for fiber optics are feedbacks, (fuel valve, SVA, bleeds), PLA,

discrete signals to the control, and communication with other avionics

equipment. Control sensors that provide direct digital output will be used

where possible to eliminate input conditioning circuits.

3.4.2 High Technology Control System

The High Technology Control System is the selected control for the Energy
Efficient Engine--the remaining two controls are backup systems. The
technologies for thls system, shown schematically in Figure 3.4-I, provide the
optimal cost, weight, and performance trades within the constraints of
reasonable expected technology advances. A fallback technology position is
provided for areas where unsubstantiated technology is advocated. Cost and
weight savings due to the chosen system are described in a memo "Energy
Efficient Engine Control System Cost and Weight Comparisons with 9D Baseline, _'
R. E. Babineau to J. Bissett, August I, 1978, (see Appendix C).
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Figure 3.4-I Selected Fuel Control System - - The system was selected to

provide optimal cost, weight, and performance.

3.4.3 Moderate Technology Control System

The moderate technology control system (Figure 3.4-2) uses many components

that are either in production or could go into production without further

research development. Most of the components in this category are natural
extensions of present techno]ogy devices.

The most noticeable advance in this system over the conservative system is in

the use of separate metering pumps for pilot and main rue] flow and air

cooling of the electronics. The use of two metering pumps results in a

substantial reduction in fuel temperature rise at high turndown ratios, while

air cooling of the electronics results in substantial reduction in engine cost

and weight due to elimination of fire bulkheads necessitated by fuel cooling.

Fuel flow to the engine is metered directly to the pump, with no bypass or
return flow. The pump consists of a variable displacement vane pump for

primary and an inlet throttled vapor pump for main flow. Hhen not operating on
main flow, the main pump is run dry to eliminate fuel temperature rise. This

control would include both a proximity sensor for active clearance control and
an optical pyrometer for limiting turbine blade temperature. The elements

shown in Table 3-1II would be typical of a moderate technology system.
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Figure 3.4-2 Moderate Technology Fuel System - - Many of the components of

this backup system are either currently in production or could

go into production without any additional development.

3.4.4 Conservative Technology Control System

The conservative technology system consists of control components that are

either presently in production or are derivatives of current production parts.
This system could be built today with reasonable confidence of success. The

conservative system is shown in Figure 3.4-3. The control would consist of the

components listed in Table 3-1V.

The fuel pump would be a single output gear type with a pressure capability o_

I0,350 MPa (1500 Ibf/in. 2) and a maximum flow rate of 6750 kQ/hr (15,000

Ibm/hr). The fuel handling would use either two metering valves with suitable

bypass and pressure regulator valves or one metering valve and a Flow solitter
valve.
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TABLE3-111
TYPICALELEMENTSOFA MODERATETECHNOLOGYSYSTEM

Fuel Flow
Handling

Sensors

Effectors

Power Suaaly

Control

Control

Packaging

Function

WF_, WFE_

PL_
_A
NL
NH
P1, PZ, P3

T_

E6T
C Iear antes:
ComOressor
L.P. Turbtne
H.P. Turbine

Fuel Flow,
Stator Vane
Actuator (SVA)

Compressor Bleeds,
Thrust Reverser,
Active Clearance Control,
Transfer Valve

Source

Regulation

Chlp Oesign

Processor Tyl_e
Processor
Archltecture

Memory Mode
Read Only M_ry

Random Access _emory

Oata Link
Cooling
Location

Tec_notoq_

Variable Flow Fuel
PumDs wlth Variable
Area Flowmeters,
ODtiCal Encoder
Feedbacks

O_ttcal Encoder
D1=tlcalEncoder
ODttcal PtckuD
Alternator Plcku_
Vibrating Cyflnder
or Vlbrstlng Quartz
Crystal
Platinum Resistance
Probe
_-AL The_cou_le
O_tlcal Pyrometer
Not ,_easured
Ooticai Proximity
Sensors

Otgltal Out=ut
Interface (_I},
Dual Solenoid
Valves with Remote
GaAs Drivers
Discrete, Solenoid
ODerated Valves wit_
Remote GaAs Drivers,

O_Icated Permanent
Magnet AIternator
Shunt Regulator

_Ix of:
VLSI
LSl
MSI
SSl
Discrete
_'MOS-VLSIor 12L
Fixed Instructions
Stngle Processor

C_OS
,WIxof:
PROM
UVROM
Static C-_OS
(Non Refreshed}
Serial ODtica I
Air Cooling
Fan Case MOunt on
Vibration Isolators
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Figure 3.4-3 Conservative Technology Fuel System - - This is the most

conservative of the backup systems.

Figure 3.4-4 represents the most conservative controller approach, utilizing

discrete MSI/SSI circuitry for input/output and two-microprocessors with

external memory: one to process the inputs; the other to perform the control
computations and outputs. The two processor approach reflects the current

situation of insufficient internal memory and insufficient processor speed

available in qualified parts. Such an approach for the mid-1980's would yield

a minimal decrease in cost, size, and power consumption over the present
state-of-the-art, and is not a favorable candidate for development.
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TABLE 3-1V

CONSERVATIVE TECHNOLOGY SYSTEM COMPONENTS

Funct i on Techno Ioqy

Fuel Flow WFEP, WFEM Variable Flow Fuel

Handling PunN)s with Shedding
Vortex FIo_.eter
Feedbacks

Sensors PLA Optical Encoder
SVA Optical Encoder

NL O_tlcal Pickup

NH Alternator Pickup

Pl, P2, P3 Surface Acoustic
Wave (SAW)

T 2 Platinum Resistance
Probe

_T CR-AL ThermocoupleOptical pyrometer

Clearances: Optical Proximity

Compressor Sensors

L. P. Turbine

H. P. Turbine

Effectors Fuel Flow Digital Output
Interface

Stator Vane Actuator (_A) (OOI), Dual
Solenoid
Valves or Torque
Motor

Wlth Remote GaAs

Drivers

Power Supply

Control

Packaging

Compressor 81eeds

Thrust Reverser

Active Clearance Control

Transfer Valve

Source

Regulation

Chip Design

Processor Type
Processor
Architecture

Memory mode
Read Only Memory
Random Access Memory

Data Link

Cooling
Location

Discrete Solenoid

Operated Valves
With Remote GaAs

Drivers

Dedicated Permanent

Magnet Alternator

Shunt Regulator

Mix of:
VLSI

LSI

MSI

Discrete

N_R)S-VLSI

Fixed Instructions

Single Processor
N-Mos

UVROM

Static NMOS (Non-

Refreshed)

Serial Optical

Air Cooling
Fan Case Mount On

Vibration Isolators
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Figure 3.4-4 Conservative Electronic Controller Architecture - - The
conservative technology control system utilizes components that

are either currently in production or are derivatives of current

production items.

3.5 TECHNOLOGY SELECTION

The purpose of the Energy Efficient Engine Program is to design an ermine that
is fuel efficient, performance retentive, and provides reduced maintenance and

direct operating costs. The control system conceptual definition was conducted
with these objectives in mind. In Pratt & Whitney judqement these goals ,vill

be best accomplished with an electronic control system. The control systefn

preliminary definition was therefore based on an electronic control, and much
of the candidate technology for the control system concept is applicable to

electronic control systems. Although the technology is specifically aimed at

the require:nents of the program conceptual system, it is considered generally

applicable to any advanced commercial engine embodying overall Energy
Efficient Engine and component design concepts. The technology is in varying

states of development: from the feasibility stage to production availability.

Appendix B provides tradeoffs for selection of technology for the various
system elements. The candidate technologies and selections are summarized in
the following paragraphs. Some of the more innovative technolonies are briefly
described. The technology selections are summarized in Tables V, Vl, and VII

(Section 6). 17



3.5.1 Electronic Controller

The electronic controller provides all cor_putations required to effect control

of the engine fuel flows and the geometry actuators. It is a full authority
digital electronic controller and includes controller health monitorinn

capabilities in addition to its control functions. The controller includes the

circuitry for signal conditioning the electrical signals from the sensors and

transducers, output driver circuits for the actuator controls, data

communications bus with the aircraft system, central processor unit and
memories, and power supply. Engine parameters used in the controller are

available to a condition-monitoring unit by means of a serial data link.

The electronic controller is designed to be mounted on the engine fan case and

employs either air or fuel cooling for controlling electronic component

temperatures. Protection against shock and vibration is provided by vibration
isolator iaountings.

Many different controller configurations are possible with the large number of

components available today. This flexibility is expected to expand with time
because development of newer components is anticipated during the next decade.

Various functional areas of the electronic controller were studied. The study

(based on factors such as cost, weight, reliability, and technical readiness,

as applied to engine control electronics ) utilized projections of technology
and device development available in the mid-1980's. The matrix evaluation

charts included with this report represent an attempt to rate the various

areas and components to indicate the most favorable approach to a controller
design. The following major elements of the electronic controller were studied:

Central Processing Unit (CPU)
Read Only Memory (ROM)

Random Access Memory (RAId)

ROM/RAM Processing

Chip Design

Processor Design
Cooling

Power Supply
Data Link

Mounting

Signal Conditioning

3.5.2 Pumping And Fuel Netering

The fuel pumping system must provide flow for both pilot and main metered
flows and for actuator muscles pressure for the intercompressor bleed actuator
and stator vane actuator. Three basic pumping modes were considered:

l) Single fixed-displacement pump

2) Single variable-delivery pump

3) Dual variable-delivery pumps

18



Six schemesevolved from these three basic modes:

Schemel - Single Fixed Displacement Pump

Scheme2 - Variable SpeedGear with Inlet Throttled Centrifugal Pump

Scheme3 - Double-Acting Variable Displacer_ent Vane with Inlet
Throttled Centrifugal Pump

Scheme4 ° Dual Variable Displacement Vane Pump

Scheme5 - Inlet Throttled Centrifugal with Disappearing Vane Start
Stage Pump

Scheme6 - Variable Displacement Single Element Vane Pump

A flow diagram for the single fixed-displacement pumpsystem (Schemel) is
shownin Figure 3.5-I. This pump, a high pressure (I035 kPa (15DOIbf/in.2))
gear pump, could be used to provide the basis of a state-of-the-art fuel
handling system. The fuel flow would be controlled by a standard meterinq

valve/bypass valve system.
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Figure 3.5-I Single Fixed-Displacement Punp Scheme -- This pump, a
nigh-pressure gear pump, could be used to provide the basis of a
state-of-art fuel handling system.
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A flow diagram for the single variable-delivery pumpsystem is sho_n in FiQure
3.5-2. This pumpoperates in a mannersimilar to the fixed displaced system
except that pilot inetering valve _P is maintained by controlling pumpflow.
Twotypes of pumpswere considered: a variable stroke vane pump(Scheme6) and
an inlet throttled vapor core pumpwith disappearing starting vanes (Scheme5)
for developing starting pressure and flow.

The dual variable-delivery pumpmodereduces fuel control system weight and
temperature rise by placing the pilot and main fuel pumpsin a single housinq.
Flow diagrams for the dual pumpsmodeare shownin Figure 3.5-3 and Fiqure
3.5-4.
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Figure 3.5-2 Single Variable Displacement Pump Scheme -- Variable stroke vane

pumps and inlet throttled vapor core pumps were considered.
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Figure 3.5-3 Dual Pumping Elements-Actuators in Parallel with Fuel Flow -- by
using two separately controlled fuel pump in a single housing,
weight and temperature rise is reduced.

!
F_ _ IELECT_OmC CON rHOL

I i

_£o_ I I"_'ooooL._ --..J ,'T,_,_, I--.--4 ol _"

Figure 3.5-4 Dual Pumping Elements-Actuators in Series with Pilot Flow --
This pumping scheme, the variable speed gear pump/vapor core
combination, had the highest performance factor.
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Several versions of the two pumps were explored by Chandler Evans. Three of
the versions, presented in order of decreasing performance, are"

1) Variable speed gear pump for pilot flow with an inlet throttled vapor
core centrifugal main flow, (Figure 3.5-4, Scheme 2).

2) Variable displacement vane pump for primary with an inlet throttled

vapor core centrifugal main flow, (Figure 3.5-5 Scheme 3).

3) Double-acting vane pump with pilot and main flow controlled on

opposite sides of the pump, (Figure 3.5-5 Scheme 4).

The three basic pumping modes, single fixed-displacement pump, single
variable-delivery pump, dual variable-delivery pumps, were arranged into two

groups"

I) Actuators in parallel with the pilot pump

2) Actuators In series with the pilot pump.
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AIRFRAME

BOOST PUMP
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Figure 3.5-5 Double Acting Vane Pump -- This pumping scheme would provide the
desired fuel performance, but was rejected because of its low

rating in cost, weight, and reliability for this application.
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All three basic pumping modes use a measuring device in both the pilot and
main fuel lines to determine fuel flow. The feedback signals are compared with
a reference fuel flow to determine the command to the pump(s). The vapor core
pump is run dry when main fuel flow is not used. A check valve in the main
output prevents manifold fuel from draining back into the pump during primary
only operation. Metering valve P and stroke measurement can be substituted
for a flow meter in the main flow line.

The selected pumping scheme is the variable speed gear pump/vapor core
combination (Scheme 2), and the second choice is the variable displacement
vane pump/vapor core pump combination (Scheme 3). The most significant
difference between the two systems is cost, vane pumps being inherently
costlier than gear pumps. The inlet throttled centrifugal with disannearine
vane start stage (Scheme 5) is third. Scheme 5 was downgraded based on the
following:

I) Scheme 5 requires a flow splitter or two metering valves and a housing to
eneter individual flows to the pilot and main burner. This eliminates the
weight and some of the cost and reliability advantage of Scheme 5 over
Scheme 3.

2) The mounting and installation advantage of Scheme 5 is largely due to the
single flow outlet. The advantage is more than lost when the complexity of
the fuel flow body is added to the system.

3) The single pump would be required to operate with a 38 to 1 turndown
ratio. If soft lighting flow is required, the turndown ratio woTJld he 5_
to I, which represents a substantial burden on pump design. The pilot
pumps in Schemes 2 and 3 require a turndown ratio of 10 to 1 or a ratio of
17 to 1 if a soft light is required. Main pump turndown is 12 to I;
therefore, Schemes 2 or 3 have a substantially lower heat rise.

The selected pump scheme consists of a centrifugal boost stage and a
positive-displacement, twin-gear primary stage driven through a variable speed
"torque converter". The main manifold is fed by a direct-drive, vapor core
pump.

The gear pump configuration is conventional, with many similar units
(including the JTgD) now in the field. The vapor core pump, although a
relatively recent development, is also a well established concept that has
been proven in the Chandler Evans AFP-20. The vapor core pump is essentially
an inlet throttled centrifugal pump. The valve used to throttle the inlet is
of variable area, permitting the flow through the pump to be varied to meet
the engine demand schedule.

The unique feature of the selected scheme, which is the key to its projected
high desirability, is the variable speed "torque converter" drive. Variable
speed drive systems have been exarlined in the past, and the technoloay of
planetary gear systems is well established, particularly in the automotive
transmission field. However, such variable speed gear systerJs have been
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extremely heavy, voluminous, and lacking in energy efficiency. The drive
system envisioned for this application simply consists of two wet face clutch
disks (driver and driven members) immersed in a fuel bath. The separating
distance between clutches is governed by a loading piston whose pressure load
is obtained from a fuel control-servo system. Large fuel demands result in
close contact of the disks through loading of the piston, and reduced demand
results in unloading the piston and separating the disks.

This concept has been tested on a limited basis on a high flow boost sta_e

drive clutch, and the speed of the driven member has been observed to be a

function of disk spacing. Modulation of secondary flow is, of course, a simple

function of inlet valve setting.

3.6 SUBCONTRACTORRECOMMENDATIONS

Three subcontractors ( Hamilton Standard Division, Bendix, and Chandler Evans)

aided Pratt & Whitney during the Control Preliminary Definition effort.

Hamilton Standard Division and Bendix are control vendors, and Chandler Evans

is a pump vendor. The recommendations of these subcontractors are summarized
in this section.

3.6.1 Hamilton Standard Division

The control recommended by Hamilton Standard Division (HSD) as havinq the best
control features is:

Electronic Controller - The technology recommended for the Energy

Efficient Engine is one single chip VLSI MOS processor using a fixed

instruction set. The recommended support items included:

Read Only Memory - single chip PROM
Random Address Memory - single chip static MOS
Airframe data link - serial optical
Discretes - GaAs JFET switches for controlling all relays.

The recommended sensors are:

Fuel flow - shedding vortex

PLA and SVA position - optical encoder

NL - optical pickup

NH alternator
Pressures - Surface Acoustic Wave (SAW)

T2 Platinum Resistance

T3 CrAI
Turbine Blade - optical pyrometer

Turbine clearance - optical proximity pickup

The HSD recommended controller is estimated to be 31.88 x 23.13 x 9 cm (12.75

x 9.25 x 3.6 in.) in size and 7.52 kg (16.7 Ibm) in weight. The controller is

estimated to require 24 watts of electric power and to be fuel cooled.
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0 Hydromechanical Components - The recommended advanced control system uses
a metering type pump with two controlled outputs. The two outputs are
closed-loop controlled by sensing pilot and main fuel flow with separate
"shedding vortex" meters. The pump, SVA, and bleed actuators are
controlled by pulsing solenoids driven by GaAs JFET switches mounted on
the solenoid to reduce control heat. The actuators receive high pressure
flow from the pilot pump in parallel with the burner, and the flow is
returned to the pump interstage Solenoids powering start bleeds, clearance
control bleeds, and other high powered discretes are actuated by GaAs
switches located on the solenoid.

3.6.2 Bendix

The Bendix control system, which is recommended for Further investiqation as a
result of this study, is summarized below:

Electronic Controller - The approach recommended by Bendix for the
electronic controller design is a single CPU employing a VLSI single-chin
r,licrocomputer having sufficient on-chip RAM/ROM and computational power to
handle engine control solutions similar in complexity to those of today.
Support circuitry consists of LSI chips of the following nature:

o sensor signal conditioning
o monolithic A/D converter with BUS interface (possibly with its own CPU)

o optical communications chips (signal conversion, data manipulation and

formatting capability, BUS interface)
o D/A converter and drivers with BUS interface (possibly with its own CPU)

o Digital Output Interface chip with BUS interface

The functions of PLA, discrete aircraft inputs, and airframe data to and from

t_e control are handled by a satellite processor mounted in the cocknit and

which communicates with the control by means of an optical service data link.

The recommended controller is air cooled and estimated to be 22.5 '< 17.5 x I0
cm (9 x 7 x 4 in.) in size and 6.08 kg (13.5 Ibm) in weight. It requires an
estimated 33 watts of electrical power with a 901.45 cm3(55 in. 3)

internal power supply.

o Hydromechanical Components - Pratt & Whitney, in conjunction with a Fuel
pump manufacturer, has decided that variable displacement pumps and vapor
core centrifugal pumps should be used. Bendix recommends that the primary
and secondary fuel flows be controlled closed loop, using a flowmeter to
_neasure flow and to modulate the pump control actuator to achieve a

requested fuel flow level. The primary and secondary pump control
actuators are modulated through two stage torque motors controlled by the

digital computer by variable pulse width drive signals. A flowmeter is
recommended for the primary fuel flow channel. This flowmeter would

consist of a servo-controlled contoured valve, a head sensor element, and
an electrofnechanical position transducer. The head sensor acts by means of

a hydraulic servo to control the contoured valve to maintain a constant
pressure across the valve. Measurement of the valve position provides a
measure of fuel flow.
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Bendix recommendsthat secondary fuel flow be determined by measuring the
position and the pressure drop across the vapor core inlet throttlinq
valve. Fuel temperature measurementis also required for secondary flow
control.

The Bendix recommendedmethod of obtaining hydraulic actuator power is hv
cascading the actuators between the primary pumpand primary flowmeter. An
SVAactuator with integrated actuator, torque motor servo valve, an
resolver feedback is recommended.The torque motor is controlled with a
pulse width modu]ated drive signal from the digital computer.

Pneumatically boosted solenoid operated valves are recommendedfor start bleed
and clearance control functions.

3.6.3 Chandler Evans

Chandler Evans (CECO)conducted a parametric analysis of four fuel-pumoinq
systems in order to determine compatibility with Energy Efficient Engine
concepts. Three of the systems utilized advanced technology concepts; this
technology to a large extent was founded on existing CECOdata. The fourth
system, which was used as a baseline, is the present JTgD-3/7
bill-of-materials system upgraded to around 1990. The most favorable system
was analyzed in further detail to confirm the analysis and define areas where
furtiler analysis and/or test is desirable.

The result of the CECOparametric analysis favored the variable-speed gear
pumpvapor core combination, with the variable displacement vane pump,vapor
core pumpcombination coming in second becauseof cost. The JT9Dpumping
system was third, and the variable double-acting vane schemewas last.
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SECTION4.0

CONTROLSYSTEIIDEFINITIONUPDATE
Closed-Loop Active Clearance Control

4.10VERVIE_J

The work described in the previous sections of this report identified the
Full-Authority, Digital Electronic Control (FADEC)system as the concept most
suitable for optimizing the lifetime performance of commercial enoines
incorporating current technology "open-loop" clearance control. In an
"open-loop" system, rotor and case geometry is set by clearance requirements
at pinch points and predicted gust and maneuver load deflections. Clearance is
modulated by cooling or heating the rotors or cases according to a
pre-determined schedule of suitable parameters such as rotor speed, altitude
and time. Experience has shownthat open-loop clearance control in compressor
and turbine componentscan improve TSFCat cruise operating conditions on the
order of two percent relative to an engine without clearance control. Ho,Qever,
open-loop systems are not able to compensatefor engine-to-engine part
tolerance variations, in-service deterioration due to blade tip rubs,
time-varying conditions caused by power transients and clearance variations
caused by gust or raaneuver loads.

Work conducted under the Energy Efficient Engine Technology Benefit/Cost SttJdy
(Ref. I) indicated that a closed-loop clearance control system, which
continuously monitors blade tip clearance, could provide solutions to rlany of
the above-mentioned concerns; leading to a further improvement of from 0.75 to
one percent in cruise TSFC as well as potential reductions in fuel consumption
during climb and descent. Critical to the success of such a system is a
clearance sensing device suitable for flight engine applications. The decision
was subsequently made to update the engine control system definition to
include sensing elements and actuation devices necessary to accomnlish
closed-loop active clearance control in engine compressor and turbine
components. This work is described in the following sections of the report.

4.2 DEFINITION OF REQUIREMENTS

4.2.1 System Requirements

The first step in defining clearance sensor requirements was to realize that
the maintenance of tight running clearances between blade tips and cases would
require not only maintaining uniform closure rates but also comnensation For
case out-of-roundness due to circumferential thermal distortions. Studies have
shown that case out-of-roundness would negate clearance objectives and ca,_se
rubs. Therefor,at least three, and possibly, four sensors could be required at
each measurement station. Case cooling airflow wo_ild have to be controlled
differentially, in order to achieve desired clearances around the engine
circumference. The number of measurement stations required has not been
determined, but there would probably have to be at least one station for each
engine component where clearances are being measured (i.e.hioh-Dressure
compressor, high-pressure turbine or low-pressure turbine). Therefore, it
appears obvious that multiple sensors per engine _ill be required, along with
multiple cooling air valves. Such a system is shown schematically in Figure
4.2.1. The engine electronic control (EEC) would have to receive and process
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Figure 4.2-I Closed Loop Clearance Control System Requirements

the signal from each sensor (and possibly excite the sensor as well),
calculate the error in the position of each of the valves, and cool, and each
valve to change position accordingly. The magnitude of the additional EEC
computional burden has not been estimated and is partially deDendent on the
type of sensor which is selected.

Studies also suggest that case response to cooling through active clearance
control flow modulation will not accomodate Fast engine transients and
i_laneuver loadings. Thus, achieving clearance goals under steady-state
conditions would result in rubs under these types of conditions. Therefore, a
means of rapidly increasing clearance, on demand, is desirable. To suI:_mrize;
system requirements for a closed-loop active clearance control systenl include:

(I) Clearance sensors to provide continuous Inonitoring of the actual
clearance at several positions within the engine.

(2) Electronic control Features to process the clearance sensor data an,_
co_Imand appropriate action of the clearance modulation valves.

(3) ,leans For differential clearance modulation to provide improved case
roundness while maintaining desired clearances.
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4.2.2 Clearance Sensor Requirements

The second step in defining clearance sensor requirements was to define those
peculiar to the sensing device itself. These generally fall into the
catagories of performance requirements, operational requirements and
engineering requirements.

Performance require_nents are those that relate to the range, accuracy,
response rate, sensitivity and resolution of the sensing device. Ranne refers

to the variation in rotor speed and number of blades in the engine component

whose blade tip clearance is to be assessed. Accuracy refers to clearance

measurement accuracy, Response rate , the speed with which a clearance signal
is acquired, processed, transmitted and displayed, Sensitivity, the degree to
which sensor performance may be affected by blade tip thickness, blade
material, seal material, and axial motion in rotor relative to the sensor head
position, and Resolution, the clarity and definition of the clearance signal
produced by the sensor. These requirements are summerized in Table 4.2.1 for
high-pressure compressor, high-pressure turbine and low-pressure turbine
applications.

Operational requirements are those associated with installation, operation and
maintenance of the system. Specific criteria relate to ease of installation,
ease of calibration and ease of handling (particularly as it applies to sensor
fragility). These all relate to how easy it is to maintain the system. Other
factors include the power and source of power to operate the sensor plus any
special equipment required to operate the sensor, sensor durability and any
sensor cooling requirements, particularly in high-pressure turbine
applications. The objective is to make the system as simple and trouble-free
as possible.

Engineering requirements are those associated with desiqn objectives for the

system. These include establishing technical concept viability along with

size, weight and modularity criteria that will result in a viable

flight-weight system. Interface compatibility with the engine control syster_
is also important as is tolerance to environmental conditions suci_ as g_s-_ath
temperatures and pressure, vibration and sensor tip contamination. Electronic
systems must be resistant to electromagnetic interference. System efficiency
is a function of signal-to-noise ratio for electronic systems, signal source,
the signal detector as well as the signal handling system and ancillary
equipment or service requirements.

The requirements discussed in this section formed the basis for the clearance
sensor screening and evaluations discussed in Section 4.3.
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TABLE4.2-I
CLOSED-LOOPCLEARANCESENSORPERFORMANCEREQUIREMENTS

COMPRESSOR REQUIREMENTS

Rotor Speed
No. of Blades

Blade Thickness

Blade Material

Seal Material

Clearance

Axial Movement

Accuracy
Response

500-19000 rpm
4O-75

l.Ol O.177cm (0.40- 0.070 in)

Titanium (Front Stages)
NI STL (Rear Stages)

NI CR Sponge

0.038 cm (0.015 in) (open-loop experience)

0.020 cm (0.008 in) (closed-loop goal)
0.317 cm (0.125 in)

+ 0.002 cm (O.OOl in)
T.O sec., Max.

HIGH-PRESSURE TURBINE REQUIREMENTS

Rotor Speed
No. of Blades

Blade Thickness
Blade Material

Clearance

Axial Movement

Accuracy

Response

500-19000 rpm
40-7O

0.5 cm (0.2- 0.3 in)
SIC GRIT

IN NI STL

0.033 cm (0.013 in) (open-loop experience)

0.017 cm (0.007 in) (closed-loop qoal)
0.381 cm (0.150- 0.200 in)
+ O.OOl

T.O sec., Max.

LOW-PRESSURE TURBINE REQUIREMENTS

Rotor Speed
No. of Blades

Blade Thickness

Blade Material

Seal Material

Clearance

Axial Movement
Accuracy
Response

900-7500 rpm

N/A -Blade tips are shrouded

0.02- 0.03 in. knife-edge
NI STL

NI STL

0.050 cm (0.020 in) (open-loop experience)

0.025 cm (O.OlO in) (closed-loop goal)
0.300- 0.400 in.

+ 0.002 cm (O.OOl in)
T sec., Max.
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4.3 CLEARANCE SENSOR SCREENING AND EVALUATIONS

_Jork conducted under the Energy Efficient Engine Technology Benifit/Cost Study
(Ref. 4.3.1) indicated that a closed-loop clearance control system, which
continuously monitors blade tip clearance, could provide further improvment of
0.75 to 1.0 percent in cruise TSFC over open-loop systems as well as potential
reductions in fuel consumption during climb and descent. Approximately
one-half of the potential improvement derives from the high-pressure turbine.
The principal criteria for screening sensor candidates were defined as follo_vs:

I) must meet flight engine weight, complexity and maintainability

requirements;

2) must be compatible in size with current laser proximity probes
(approximately 1.2 cm [0.5 in.] dia);

3) must be tolerant to contaminants on the probe face;

4) must be capable of functioning under rub conditions at temperatures up
to 1538°(2800°F);

5) must maintain clearance within _ 0.002 cm (0.001 in.)with a response
time of 1.0 second or less;

6) must maintain clearance measurement accuracy over a range of blade tip
thicknesses from 0.05 cm (0.02 in.) to 0.76 cm (0.3 in.).

4.3.1 Matrix of Potential Candidates

A survey of potential blade clearance sensing techniques yielded the follo_vina
candidate sensor types: l) touch, 2) eddy current, 3) reluctance, 4) x-ray, 5)

capacitance, 6) optical, 7) microwave and 8) fluidic.

The touch probe concept shown in Figure 4.3.1-I includes a translating button
which invades the gaspath to contact a rotating blade tip to determine its

radial location. The eddy current probe concept depicted in Figure _.3.1-2
includes an electric circuit to provide an alternating current through a coil

which enduces an eddy current through the blades as an indication of the

clearance. The reluctance probe, Figure 4.3.1-3, is an electromagnetic circ,_it

which includes a two-pole magnet and the blades, which together create a

closed circuit which has varying reluctance dependent on the spacing.

The x-ray probe, Figure 4.3.1-4, includes a source and detector (receiver) to

project across the clearance region between the blade tips and outer air seal
for measuring running clearance. The capacitance probe, Figure 4.3.1-5, is

based on measuring the capacitance between a fixed primary plate and the

rotating blades as a secondary plate to identify the clearance. The advanced

optical probe, Figure 4.3.1-6, illuminates a window between the blade tip

plane and an abradible stop to determine the running clearances.

31



ELECTRICAL
CIRCUIT

TRANSLATINGBUTTON_a,.

lliliIF_

T ACTUATOR

Y///F/_

I
_// //A" -,F-TURBINE CASE

._SEAL

BLADE TIP SECTIONS

Figure 4.3.]-I Touch Probe Schematic

I ELECTRICAL iCIRCUIT

IIIIIIII_

COIL

_lllllll

'I_ _ BLADEU-
TIP SECTIONS

Figure 4.3.]-2 Eddy Current Probe Concept

32



ELECTRICALCIRCUIT

COILS

._TURBINE CASE

POLES

._SEAL

a_.-BLADE TIP SECTIOI_S

Figure 4.3.1-3 Reluctance Probe Concept

X-RAY

DETECTOR

CASE

SEAL

I

_BLADE TIP SECTIONS

X-RAY

SOU RC E

F_gure 4.3.1-4 X-Ray Probe Concept

33



I ELECTRICALCIRCUIT

_TURBINE CASE

FIXEDPLATE

IIIIIIIII SEAL

|

BLADE TIP SECTIONS

Figure 4.3.1-5 Capacitance Probe Concept

_ABRADABLE STOP

VIEW MINATE

_ \ •

Y/////A sA,_
BLADE

TIP _
PLANE

Figure 4.3.1-6 Optical Clearance Sensor Concept

34



The microwaveprobe concept shownin Figure 4.3.1-7 provides clearance
measurementby matching a knownelectrical input frequency to a resonant
frequency in a microwave probe cavity. The final candidate, a fluidic probe
concept, is shownin Figure 4.3.1-8. Clearence measurementis a calculated
function of a nozzle flow area in a pressure-balanced and flow-metered bridge
system.

Input  Z]Output

  TE811

blades

Figure 4.3.1-7 Microwave Probe Concept

\

PRESSURE
'2'
I

Figure 4.3.1-8 Fluidic Probe Concept
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4.3.2 Probe Concept Screening

A screening process narrowed the candidates from eight down to three:

l) optical, 2) microwave, and 3) fluidic. The touch probe was determined to be

nonviable since it is difficult to automate the translating button, it senses

the longest blade only, it does not directly measure the running clearance,

and requires current to be passed through engine bearings. The eddy current
probe was eliminated because of the need to place electric circuit elements in

a hot turbine environment, the variability of high temperature magnetic
properties, and an indirect indication of running clearance. The reluctance

probe is not considered viable because of poor signal quality and service,
electric circuit elements exposed to the hot gaspath, variability of high

temperature magnetic properties, and the requirement for magnetic, abradable

probes. The x-ray probe, although an effective clearance measurement device,
requires large and heavy components with high electric power input.

The capacitive probe, while promising, will require the development of an

abradable, conductive sensor plate, very high temperature insulators, and a

technique for filtering electrical noise generated within the engine. The

effects of sensor tip contaminants (molten particulates for example) also need
to be investigated.

Optical, microwave, and fluidic probes were judged to show sufficient promise
to merit further more detailed study. The optical sensors could measure actual
clearance since the optical output is proportional to the window size between
the abradable stop and the blade tips. Delicate optics can also be set back in
recesses from the hot gaspath.

The microwave probe provides direct clearance measurement by freouency
matching. The fluidic probe also provides direct clearance measurement by
pressure balancing as discussed earlier.

4.3.3 Refined Definitions - Optical, Microwave, and Fluidic Systems

A refined optical clearance sensing system was conceived for Further study and
evaluation. The system, shown in Figure 4.3.3-I, includes a light source anH
detector power and pneumatic sources, a micro-processor/memory/buffer system,
and necessary optics. The optical sensor employs a relatively thin optical stoo
which abrades along with the outer air seal such that the blade-to-stop
clearance is always the same as the blade-to-seal clearance of interest. When
light is obliquely incident on a blade tip from one side of the stop, the sto_

casts a shadow on the blade tip and controls (in proportion to the clearance)

the amount of tip illumination viewable from the non-illuminated side of the
stop. The stop can be momentarily retracted by a simple pneumatic actuator to

permit viewing the full unshadowed illumination, which can be used as a

reference for subsequent shadowed measurements. Automatic compensation is

thereby provided for changes in blade reflectivity, source intensity, optical
loss etc.

Evaluation of this system led to the following conclusions regardinq viability:
1) direct clearance measurement capability; 2) low contamination sensitivity; 3)
readily multiplexible; 4) low cost light source with low Dower requirement; 5)
automatically compensates for reflecting and degradation; 6) probably acceptable
for compressor and low-pressure turbine applications; and 7) questionable For
high-pressure turbine applications (erosion sensitivity and backqround liqht).
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The refined definition of the microwave sensor system, shown schematically in

Figure 4.3.3-2, includes a microwave source, a detector, and signal processor
in addition to the sensor head. Clearance measurement is achieved by matchinn
a known electrical input frequency to a resonent frequency in the microwave

probe cavity where the frequency is a function of the clearance between the
sensor probe face and the passing blade tips. The system was determined to be

suitable for the high temperature high pressure turbine application, ass,lminn

verification of probe face contamination tolerance and 2800°F operating

capability, without dielectric property deterioration.

Refined definition of the fluidic sensor system, shown in Figure 4.3.3-3,

includes the fluidic sensor, transducer, and a stepper r_otor to balance the

pneumatic "bridge". The stepper motor is driven to adjust the control area to

a position to produce a given difference between P2 and P2" The control
area is directly correlateable with clearance. While the system was determined

to be a viable candidate for high pressure turbine environments, there is

concern over molten particulate matter large enough to pluq the sensor tip

flow orifices and create false clearance indications.
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4.4 SENSOR TIP ABRADABILITY TESTS

Both the microwave and fluidic sensor probe faces can be provided with an

abradable surface compatible with the ceramics used in high-pressure turbine
outer airseals. For the fluidic sensor, this surface material was zirconia

whereas the microwave sensor used a porous alumina cap over a dense alumina

cavity filler The latter was necessary to preserve the dielectric
characteristics of the microwave sensor probe cavity. These configurations are

shown in schematic cross-section and as mounted in a turbine outer airseal

segment for rub tests in Figure 4.4-I.

POROUS AI203 i

ZIRCONIA _.LA_;_

OUTER AIRSEAL

SEGMENT

FLOW

ORIFICES

4

MICROWAVE SENSOR . FLUIDIC SENSOR '

Figure 4.4-I Samples of Sensor Specimens as Configured For Rub Tests

Hot rub tests of the fluidic sensor tip indicated a need for investiqation of

alternate sensor tip configurations. Under conditions of 2250°F surface

temperature and a rub depth of 0.063 cm (0.025 in.), significant crackinq and
mechanical failure of the ceramic tip cap was observed, particularly in the

area surrounding the flow orifices and the kidney-shaped plenums. Direction of

rub was changed with no noticeable improvement. Reducing the size of the

plenums also did not eliminate the problem.

39



Early rub tests of the microwave sensor tip indicated sofle spalling and
mechanical failures near the edge regions of the tip cap. These were
eliminated by modifying the bonding surface geometry at the interface between
the dense and porous alumina layers. Rub repeatability tests confirmed
satisfactory results. Additional testing was subsequently conducted in a hot
rub turbine simulation test rig to assess the ability of the microwave sensor
to measureclearance over a range of temperatures. During these tests a
useable clearance signal was produced up to 2600°F, whenthe test was
terminated becauseof thermal failure of a portion of the rig structure. It
appeared, however, that the sensor could have continued to produce useable
signals at higher temperatures.

4.5 APPLICATIONSTUDYANDBENEFITSANALYSIS

The sensor screening activities previously described, along with results from
the sensor tip abradability tests, indicated that the microwave and fluidic
sensors were the most promising candidates for high-pressure turbine
applications. A study was subsequently conducted to quantify the mission fuel
burn benefits associated with utilization of these sensor devices in a
closed-loop active clearance control system. Specific objectives of the study
were to (I) comparethe fluidic and microwave sensors in a high-pressure
turbine application, (2) evaluate a "Thermal-only" vs. a combined
"Thermal/Hechanical" actuation system, (3) determine the benefits of
closed-loop active clearance control over all segmentsof the flight path,
from take-off to landing and (4) investigate the benefits of utilizing
closed-loop active clearance control clearance deterioration recovery.

4.5.1 Study GroundRules

The engine selected for this evaluation was the NaximumEfficiency Energy
Efficient Engine (ME4) described in Ref. (1). It employs a two-stage
high-pressure turbine similar to those utilized in the most advancedmodern
day turbofan engines with open-loop active clearance control systems. It's
open-loop running clearances could therefore be expected to be similar to
those encountered in current engine experience.

Twoaircraft missions were selected for the evaluation: a short-range (400
_.M. Typical Range) 150 passenger domestic twinjet and a long-range (2000 N.r1.
Typical Range) 440 passenger international trijet. Thesemissions represent
significant differences in the fuel burn profiles, as shownin Figure 4.5-I.
These profiles highlight the mission segmentswhere additional clearance
control could be expected to showa benefit.

The clearance histories utilized in the study are depicted in Figures 4.5-?
and 4.5-3 and are representative of moderntwo-stage high-pressure turbines
employing open-loop active clearance control. Figure 4.5-2 shows the clearance
inprovement relative to actual experience, that was assumedto be achieveable
in the climb and cruise portion of the flight profile, by utilizing a
closed-loop clearance control system in conjunction with thermal actuation.
For purposes of the study, 0.0190 cm (0.0075 in) was considered to be the
practical limit for clearance closure. Thermal actuation would have little
effect in the takeoff and early climb phases of the mission profile because
the short time interval precludes case response to the available cooling air.
In the descent phase, there is simply insufficient cooling air available at
descent power settings.
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Figure 4.5-3 shows the added clearance improvement assumed possible in the
takeoff, early climb and descent portions of the mission profile with the
addition of the mechanical actuation system described in Section 4.5.2-I. The
lower limit in these portions of the profile is set by the desire to minimize
rubs due to gravitational, gyroscopic and gust load deflections (see Ref.l).
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Figure 4.5-3 Two-Stage High-Pressure Turbine Showing Potential Added
Clearance Closure with a Combined Thermal/Mechanical
Closed-Loop ACC System

Because the fludic sensor requires a small amount of compressor air For its
operation, it imposes a slight performance penalty on the engine. The
anagnitude of the penalty is a function of the number of sensors required to
accurately monitor clearance in the turbine. For this study it was assumed
that four sensors, one located in each circumferential quadrant of the turbine
case, would be required as a minimum. The performance penalty for this number
was on the order of a 0.025 percent increase in TSFC.

To investigate the benefits of clearance deterioration recovery, it was
assumed that the study engine would have the same deterioration characteristic
as the Energy Efficient Engine Flight Propulsion System described in Ref. (2)
(Energy Efficient Engine Flight Propulsion System Preliminary Analysis and
Design Report). This characteristic is shown in Figure 4.5-4, which identifies
the performance recovery possible with high-pressure turbine clearance
recovery.
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Figure 4.5-4
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4.5.2 High-Pressure Turbine Closed-Loop Active Clearance Control System

Definition

In order to conduct a meaningful mission analysis, it was necessary to provide

a system definition that would permit a reasonably accurate installed weight
assessment for the sensor types. The two F1ajor elements of the system are ll)

the combined thermal/mechanical actuation devices necessary for clearance

variation and (2) the closed-loop sensor system required to control the

thermal/mechanical actuation devices such that the desired clearances are

obtained. These elements are described in the following paraqraphs.

4.5.2-I Therlnal/Hechanical Actuation System

The design of the thermal/inechanical actuation system was set by the
requirements to provide (1) rapid turbine blade outer airseal radial moveIlent
for those conditions where thermal response might not be adequate, (2) the

capability to 'fine-tune' the blade tip clearances during steady state or
moderate transient conditions and (3) the capability to maintain case

concentricity with respect to the blade tips while the case is undergoinq

differential pressure or thermal loads.

The conceptual design that evolved from these requirements combines a

pressure-balanced thermal system with a two-position mechanical system; the
latter was selected over a fully-modulated approach because it represented a

simpler design. The pressure-balanced system is shown in Figure 4.5-5. The
system divides the secondary airflow (cooling air) into two basic components
to balance the pressure loads on the outer airseals. This balance is

accomplished by internal manifolds and bellows-type conduits which maintain

the pressurized airflow necessary for'cooling the segments. The pressure in
the cavity formed at the turbine case, seal rail supports and outer seal

segments is modulated through a valve to balance the system. Figure 4.5-5 also
shows how either sensor probe would be installed in the outer airseal segnent.
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Pressure Balanced Thermal Actuation System

The two-position mechanical system, shown in Figure 4.5-6, incorporates a

'brake band' which encircles the seal segments. The primary function of the
brake band is to provide positive seating of the seal segments while

minimizing actuation loads. The band is centered by lugs on the band which

engage slots on the support rails. Attachment hooks on the seal segments
provide a positive connection to the brake band. Pressurizing the band

actuators causes the band to contract, reducing the clearances between the
outer airseal support lugs and the support rails.

The final element in the actuator system design is the case round-up Feature

shown in Figure 4.5-7. The system shown comprises segmented airflow manifolds,
fully modulated through valves and integrated with the thermal system

described previously. The sensor probes define the blade tip proximity to the

case in each quadrant and provide the data necessary to define the impinqement
airflow split between manifold segments for the rounding-up process.
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4.5.2.2 Closed-Loop Sensor S_stem

The closed-loop sensor system comprises the elements of the total clearance

control system that are necessary to insure that the thermal/mechanical system

provides the required clearance control. The system is shown schematically in
Figure 4.5-8 as installed on the engine. Its components are the clearance

sensor (probes) mounted in the turbine case; the wave guides (microwave) or

air supply lines (fluidic) connecting the sensors to the controller box; the

controller box, which receives clearance signals from the sensors, feeds these

signals to the control logic in the electronic engine control and provides
actuation signals to the valves controlling air distribution; and the

connector cable between the controller box and the electronic engine control.
The fluidic system requires an additional air supply line from a suitable
high-pressure compressor bleed location to the controller box. Microwave

sensor wave guides and fluidic sensor air supply lines are representative of
conventionally fabricated parts.

C.G.

,HPC BLEED

F- SENSOR
i

_. LOCATIONS (4)

i

ACCESSORIES >

Figure 4.5-8
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4.5.2-3 Closed-Loop Active Clearance Control System Weight

The estimated weights for the systems described in sections 4.5.2-I and
4.5.2-2 are summarized in Table 4.5-I. The weights shown are preliminary
estimates based on the conceptual nature of the design studies, and represent
weight added to the engine relative to a conventional open-loop clearance
control system. The fluidic system is slightly heavier than the microwave
system because its controller box contains step motors (compared to simple
electronic circuit boards); there are twice as many air SuDply lines as wave
guides; the connector cables between the controller box and the electronic
engine control require significantly more wires; and there is the added
requirement for a compressor bleed air supply line. Even so, the total weight
difference is only in the order of I0 percent.

TABLE 4.5-I
ESTIMATED CLOSED-LOOP ACTIVE CLEARANCE CONTROL SYSTEM _EIGHT

Sxstem Component

Thermal/Mechanical Actuation, kg (Lbs)

Closed-Loop Sensor, kg (Lbs)

Total Weight, kg (Ibs)

Fluidic Sensor

35.6 (78.5)

15.1 (33.5)

50.8 (112.0)

Hicrowave Sensor

35.6 (78.5)

10.4 (23.0)

46.0 (101.5)

4.5.3 Mission Analysis Results

Application of the study ground rules and closed-loop active clearance control
system definition to mission analyses yielded the results shown in Figures
4.5-9 through 4.5-12.

Figures 4.5-9 and 4.5-10 compare the mission fuel burn savings, over each
segment of the mission profile, between the combined thermal/mechanical
actuation system and the thermal-only actuation system. The clearance sensor
used for this particular comparison was the microwave. As expected, the fuel
burn benefit of the combined system is greater than the thermal-only system
due to the added fuel saved during takeoff, descent and approach through use
of mechanical actuation. This benefit is more pronounced in the short-range
twinjet application because of the fuel burn profile (see Figure 4.5-I).
However, when the added weight of the closed-loop active clearance control
systems is included in the analysis, the advantage of the combined system is
considerably reduced for the short-range mission and disappears altoQether For
the long-range mission. If first cost and maintenance cost were added to the
analysis, the advantage of the combined system in the short-range mission
would be further eroded and might disappear altogether. Therefore, the
additional weight, cost, and complexity of the mechanical actuation system
incorporated in this study does not appear to be justified. The remaininn
analyses were conducted using the thermal-only actuation system.
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Figure 4.5-11 compares the mission fuel burn savings achieved with
closed-loop ACC system when either a fluidic or microwave clearance sensor are
incorporated in a thermal actuation system. As expected, the heavier weight
and performance penalty associated with the fluidic system give the advantaqe
to the microwave sensor in both mission applications.

The final element of the mission analysis was to investigate the benefits of

utilizing closed-loop ACC for clearance deterioration recovery. The assumption
here was that the sensor would 'sense' clearance increases caused by

inadvertent blade tip rubs and continually compensate for these throughout the

life cycle of the engine so that the design clearance was maintained. Results

of this analysis are summarized in Figure 4.5-12 for a nominal engine life of

4000 cycles before removal for scheduled maintenance. As indicated,

significant fuel burn savings can be obtained through deterioration recovery
in the high-pressure turbine alone. This form of benefit should also be

obtainable in high-pressure compressor and low-pressure turbine aDplications

and may, in fact, be the principle benefit for those applications.

It remains now to work toward verification of these projected benefits. This

will require continued sensor and control system development and operational

testing, as well as development of a case design criteria to minimize case
deflections due to thermal and mechanical loads. This effort was outside the

scope of the present study.
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SECTION5.0

RECOMMENDEDTECHNOLOGYPROGRAMS

Critical advancedcontrol technologies have been identified that will require
R&Dtype programs. These technologies in addition to providing better
performance minimize control costs and weight and improve reliability. The
necessary programs, including overall system demonstration, are outlined in
this section.

5.1 OPTICALPROXIMITYSENSOR

Objective

Develop the present experimental test optical proximity sensor into a
production unit.

Advantages

o Increased engine performance by maintaining ideal clearance by active
clearance control

o Prevention of performance loss due to seal rub during transients

Approach
0

0

Develop compact light weight light source to replace 1

present laser

Develop fused end type fiber ends to eliminate coolina
requirements

Develop simplified detector to replace present complex
diode array

12 _4onths

Design of sensor - 6 months

Fabrication and calibration - 6 months

o Engine test - 6 months

5.2 OPTICAL PYROMETER

Objective

Develop the present experimental test optical pyrometer into a flight unit.

Development would include electronics for signal conditioning but not for data

reduction.

Advantages

o Increased engine life by preventing turbine over-temperature throunh
direct measurement of turbine blade temperature

o Detect incipient turbine failures resultinq from hot spots
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Approach

0

0

0

0

5.3

Design flight hardware - 6 months

Fabricate flight hardware and calibrate - 6 months

Endurance testing on engine - 6 months

Redesign flight hardware based on above test - 3 months

o Fabrication and test - 3 months

o Final testing on engine - 6 months

GaAs SWITCH DEVELOPMENT

Objective

o Develop the present experimental high temperature GaAs switch.

Advantages

o Removes high power dissipating semiconductor switches from control

o Permits preliminary power regulation to be performed on alternator
rather than on inside of control box

Approach

0

0

0

0

0

0

Fabrication of test units - 5 months

Implementation and evaluation of passivation - 12 months

Selection of best passivation technique

Fabrication of passivated switches - 7 months

Life test passivated switches - 3 months

Bench test on control bench test - 6 months

o Engine test - 6 months

5.4 GaAs PHOTO SWITCH

Objective

o Develop a high temperature GaAs switch that can be activated by a
remote light source.
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Advantages

o Removes large heat dissipating switches from control box, 91acinq
them on controlled device.

0

Approach

Eliminates EMI problems by using fiber-optic cables instead of
electrical lines.

Design and build a hybrid two-stage photo switch - 7 months

Test and evaluation of first generation switch - 2 months

Design and build second generation hybrid photo diode - 3 months

Design and build monolithic chip - 8 months

Test and evaluation of hybrid and monolithic chips - 4 months

Bench test breadboard control - 6 months

Engine test - 6 months

5.5 GaAs DIODE PROTECTION

Objective

o Develop a high temperature diode.

Advantages

o Provides switch protection against counter EMF during solenoid

0

Approach

0

0

0

0

0

0

0

disengagement

Diode protection can be located on switched device, thereby redLJcinn
heat inside control

Design and fabrication of junction 6 months

Design and fabrication of Schottky barrier diodes - 14 months

Evaluation of above diodes - I0 months

Redesign of best technology - 4 months

Final fabrication - 5 months

lO00-hour life test - 5 months

Bench test on control - 6 months

Engine test on dummy load - 6 months
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5.6 HIGHTEMPERATUREGaAsRECTIFIER

Objective

o Develop a high temperature rectifier

Advantages

o Increased power supply reliability through development of high
temperature rectifiers

o Increased control reliability by mounting rectifiers on alternator,
thereby removing heat load from inside electronic control box

Approach

0 Design the candidate rectifier types (Schottky barrier junction,
abrupt P-N junction, and graded P-N junction) - 7 months

Fabricate above diodes - 5 months

Mount and test - 6 months

Burn-in and evaluate - 6 months

Test on engine - 6 months

5.7 VARIABLE SPEED DRIVE FOR FIXED DISPLACEMENT FUEL PUMP

Objective

Develop a variable speed pump drive that is lightweight, reliable,
and efficient (low temperature rise in both fuel and transmission).

Advantages

Reduces fuel temperature rise because pump speed is matched to fuel
demand

Reduces control hardware because metering would be perfor_ned by pump

rather than with separate metering and bypass valves.

Approach

Design and test breadboard hardware, consisting of J-85 engine pump
and FlO0 fuel pump clutch - 6 months

Test above with electrohydraulic interface for dynamic response - 6
months

Design and fabricate barstock pump; this portion of program _#oul,_ be
effected only if there is a commitment to a production engine - 12
months
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0

0

0

0

Approach

5.8 SHEDDING VORTEX FLOW FIETZR

Objective

Develop a vortex flow meter compatable with the high response rates necessary

for minor loop fuel flow control.

Advantages

No moving parts

Frequency output compatable with digital electronics

High level of accuracy

High frequency device for fast response

0

0

0

0

0

0

0

Vortex generator profile development - 4 months

Prototype flow meter design - 5 months

Fabrication - 2 months

Performance evaluation - 3 months

Contamination testing - 4 months

Bench test under simulated engine conditions - 6 months

Engine testing - 6 months

5.9 SOLID STATE PRESSURE TRANSDUCERS

Objective

o Develop of Surface Acoustic Wave Sensor into a production unit

Advantages

o Increases accuracy over present sensors (0.1%)

o Increases response

o Reduced size, weight, and production cost

o Frequency output is digitally compatible

o Increased reliability (lO,O00 hr _TBF goal)

o Low power consumption
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Approach

0

0

0

0

0

0

0

High-Q oscillator structure development - 7 months

Hybrid circuit development - lO months

All quartz design, fabrication, and test - 12 months

Test SAW oscillators hybrid electronics package - 8 months

Evaluate sensors 4 months

Test sensors on control bench test - 6 months

Test sensors on engine - 6 months

5.10 OPTICAL DISPLACEMENT ENCODER

Objective

Develop the present optical displacement encoder into a flightworthy

production unit.

Advantages

0

0

0

0

0

Approach

0

0

0

0

0

0

0

0

Position output is direct digital word

Operates in high temperature environment

Low cost in production

Low interface cost

Can be easily multiplexed

Design third generation breadboard

Fabricate breadboard - 6 months

Test

Design barstock unit

Fabricate barstock unit - 6 months

Test unit

Bench test unit under simulated engine conditions - 6 months

Engine mounted test (passive) - 6 months
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5.11 PIEZOELECTRICJET PIPE EFFECTOR

Objective

Develop a piezoelectric jet pipe effector to replace present day torque motor.

Advantages

o Increases reliability by replacing the numerousforms of fine gauge
wire in a torque motor with the infinite numberof parallel paths of
the piezoelectric element

Reducedweight

Low current draw

Reducedproduction cost (relative to torque motor)

Digitally compatable

0

0

0

0

Approach

0

0

0

0

0

0

5.12

Objective

Design unit - 7 months

Fabrication - 4 months

Evaluate performance - 3 months

Endurance testing - 6 months

Bench testing under simulated engine conditions - 6 months

Engine mounting while operating into dummy load 6 months

AIR COOLING

o Development of techniques for air cooling electronic package

Advantages

o Eliminates fire hazard associated with fuel cooling

o Reduces weight by eliminating fire bulkheads, double-walled tubing,
struts, etc. necessitated by running fuel cooling lines to the control
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Approach

0

0

0

0

0

5.13

Analytical study of prospective cooling schemes - 6 months

Design electronic control box - 6 months

Fabricate box - 3 months

Test (bench) - 6 months

Engine test - 6 months

FIBER OPTIC CABLING

Objective

o Develop low cost durable fiber optic cabling and connectors

Advantage

o Reduces cost and weight because present systems frequently result in
overkill

Increases reliability by reducing fiber breakage0

Approach

0 Survey fiber optic cable suppliers for hardware that will satisfy
engine requirements - 6 months

o Test cables and connectors - 6 months

o Develop new designs based on above test - 12 months

5.14 ENERGY EFFICIENT ENGINE TECHNOLOGY DEMONSTRATION

Objective

o To coordinate and demonstrate advanced elements of the Enerqy
Efficient Engine control system.

Advantages

o Demonstrate new technology elements

o Demonstrate overall concept on engine test
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Approach

o Design and analytical effort (includes software) - 12 months

o Fabricate breadboard unit - 12 months

o Closed loop bench test - 6 months

o Engine test - 12 months

5.15 SAFETY FUELS

For a number of years, the aircraft industry has been interested in the use of
safety fuels for improved fire safety in the event of _rash. These safety
fuels, by reducing fuel misting when fuel tanks or fuel lines break, reduce
the possibility of explosion and fire. Although safety fuels were not
considered in the Energy Efficient Engine study, R&D programs are recommended
for determining the suitability and practicability of safety fuels for turbine
engines and fuel systems. Some suqgested program areas for control systems are:

o Determine optimum fuel injection method

o Heat transfer characteristics for engine-mounted heat exchanqers

o

o

Design modifications required to maintain fuel system performance
equivalent to that attained with present day fuels

Long-term effects of safety fuels on fuel system components

Fuel system revisions required to maintain engine starting,
performance, and altitude relight capability.
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ACC

A/D

ARINC

CCD

C-MOS

CPU

D/A

D-_IOS

DOI

EA-ROM

EEC

EGT

EMI

F/B

GaAs

GEODE

H.P.

IGV

12L

I/O

JFET

LED

L.P.

APPENDIXA
ABBREVIATIONS

Active clearance control

Analog to di gi tal

Aeronautical Radio Incorporated (standard format
data channel)

Changecoupled device

Complementrymetal oxide simiconductor

Central processing unit

Digital to analog

Diffused metal oxide semiconductor

Digital oxide interface

Electrically alterable read only memory

Electronic engine control

Exhaust gas temperature

Electromagnetic interface

Feedback

Gallium arsenide

Generalized electro-optic displacement encoder

High pressure

Inlet guide vane

Integrated interjection logic

Input/output

Junction field effect transistor

Light emitting diode

Lowpressure

for serial
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LSI

LVDT

MOS

MSI

MTBF

MTBUR

NH

NL

N-MOS

P

P2, P2'

Ap

PLA

P-MOS

P-ROM

PS

RAM

ROM

SAW

S/C

SLS

SOS/C-MOS

SS

SSI

ABBREVIATIONS (Cont'd.)

Large scale integration

Linear voltage differential transformer

Metal oxide semiconductor

Medium scale integration

Mean time between failures

Mean time between unscheduled removal

High rotor speed in RPM

Low rotor speed in RPM

Negative metal oxide semiconductor

Total pressure

Pressures within fluidic clearance sensor

Difference between P2 and P2 _

Power lever angle

Positive metal oxide semiconductor

Programable read only memory

Pressure, static

Random access memory

Read only memory

Surface acoustic wave

Signal conditioning

Sea level static

Silicon on saphire complementry metal oxide

semiconductor

Steady state

Small scale integration
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SVA

T

TBT

TBO

TE'oI 1(A1203)

Ts

TTL also T2L

UV-ROM

VLSI

V-MOS

W-FEP

ABBREVIATIONS (Cont'd.)

Stator vane angle

Total pressure

To be determined

Time between overhaul

Dielectric Aluminum Oxide Packed Powder Filler

Temperature, static

Transistor-transistor logic (also called bi-polor)

Ultra violet read only memory

Very large scale integration

"V" metal oxide semiconductor

Pilot fuel flow
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APPENDIX B

LOGIC DIAGRAMS

Appendix B contains logic diagrams and the weighted scores for each selected

component. Most of the matricies were derived by one of the three vendors.
Where both Bendix and Hamilton Standard Division considered the same component

but computed different scores, both matrices are presented with the second or
alternate being designated (A).
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Figure B-7 Decision Matrix for S3 (Low Rotor Speed Sensor)
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Figure B-12 Control System Decision Logic Diagram S6
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Figure B-21

_o_
I_UEL
[ #ANOLING

Decision Matrix for SlO (Burner Pressure Sensor)

_PI_/G - GO TO F2.

Figure B-22 Control System Decision Logic Diagram Fl

F'I_M F_L H

VAJi_IA_I_E. _I_I=_.ACEI_,-----------------__I_'I-VAM£

IMI.E.T "1"_TTLE.I:3 C..£M'r_4_L.

_k,ILF_.T __) ¢_E.NT_JF',.._,AL_ MAIl.4

Figure B-23 Control System Decision Logic Diagram F2

76



oRiGINAL pAGE IS
OF poor oUALn'Y

Figure B-24 Decision Matrix for F2 (Pumping)

Figure B-25 Control System Logic Diagram F3 - Seven schemes for

metering fuel flow were initially considered, as shown in

Figures B-25c to B25h. The final pumping schemes evolved
from overall system studies and are shown in Figure B-25a.
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Figure B-25a Final Pumping Schemes Evolved From Overall System Studies
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Figure B-25b Scheme l for Metering Fuel Flow
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Figure B-25c Scheme 2 for Metering Fuel Flow

Figure B-25d Scheme 3 for Metering Fuel Flow
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Figure B-25e Scheme 4 for Metering Fuel Flow

i

Figure B-25f Scheme 5 for Metering Fuel Flow
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Figure B-25g Scheme 6 for Metering Fuel Flow

#vm

'I
....II__ _

Figure B-25h Scheme 7 for Metering Fuel Flow
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Figure B-26 Control System Decision Logic Diagram F4

_'mo_ z ----_ co,v'r_oL J

--_E/_,IO,Ry- GO TO C_.

--,o._0CE,SSOR- GO TO C3

_CHIP DESIGN- C.OTO C_-

--Z/O - Go TO Cs

CONNECTORS 4 WIRIN_-GO TO Cb

--COOLP,_G -GO TO C7

-- _OFT WAR E. - GO TO Ca

CONTrOl_ ,MODE- GO "TO Cq

Figure B-27 Control System Decision Logic Diagram Cl

"_UAI LI4LLL L.Lt)

-----''- '--E:2"?"

.-,.,.,,.. F- -F_TI.,.
J)_LtLl_ *LL I_ND4AL

Figure B-28 Control System Decision Logic Diagram C2
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Figure B-29 C2MIM ROM Memory Matrix
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Figure B-30 C2MI(A) ROM Memory Processor r,latrix
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Figure B-31 C2M2 ROM Memory Processor Matrix
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Figure B-32 C2M2(A) RAM Processor Matrix
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Figure B-33 C2M3 RAM Memory Matrix
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Figure B-34 C2M3(A) RAM Memory Matrix
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Figure B-35 C2M4 RAM h_mory Matrix
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Figure B-36 C2M5 Static RAM Processor Matrix
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Figure B-37 C2M5 Dynamic RAM Matrix
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Figure B-38 Control System Decision Logic Diagram C3

87



/

I z 2. 2

I

f_ _t _.,_

I " i

i

Figure B-39 C3MI Number of Processors Matrix
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Figure B-40 C3MI(A) Microprocessor Architecture Matrix
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Figure B-41 C3M2 Tradeoffs
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Figure B-42 C3M3 Microprocessor Technology Matrix
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Figure B-43 C3M3(A) Microprocessor Technology Matrix
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Figure B-44 Control System Decision Logic Diagram C4
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Figure B-45 C4MI Processor Chip Design Matrix
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Figure B-46 C4M2 Memory Chip Design Matrix
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-INPUT5--OETE_MINED BY C_01C£ OF
3EN.$0;_5 AND DATA LiNK
(,.¢_'£ .3z T_mOUG_ ,st2" )

OUTI3U'I'$--DETERF_INED 8Y C;_OICE OF
£FFECTOR5

(_E_ ACCL, VAj., SAt., C/if. ')

Figure B-47 Control System Decision Logic Diagram C5

| C.0NNECI"OR3 ____
F/RO/q CZ _ *N_ DE C;.iOICE OF

(',,_EE ,-_1 T_._GN '51l, ACCt, VAZ, 8A 1, C/I/.

t
INFLUENCED BY WBRATION ANO TEjHPERATUR.E.

Figure B-48 Control System Decision Logic Diagram C6

F"COM ¢. "1- "_ C._OL.t

l_4_'I'J F1_Oh4 "('A_K.
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Figure B-49 Control System Decision Logic Diagram C7
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Figure B-50 C7M Control Cooling Matrix
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I ,_*._FOR/_ANCE _EEKING
ADAPTIVE LOGIC

F'_/_ C./, -_O1 m'r_Al::t T _ ,.9ELF'FAULT_4,R A,'_ F_'T_RN ;¢ALT_TO LERANCF-.."9"/NTHE"RIZAT_'ONANAL,,/,_I_

No'r_ •

Figure B-51 Control
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System Decision Logic Diagram C8
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Figure B-52 Control System Decision Logic Diagram C9
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Figure B-53 Control System Decision Logic Diagram D1
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Figure B-54 Decision Hatrix for DIM (Sensor Data Transmission)
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Figure B-55 Control System Decision Logic Diagram DLI
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Decision Hatrix for DLIM (Data Link)

Figure B-57 Control System Decision Logic Diagram P1
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Figure B-58 PlMl Power Source Matrix
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Figure B-59 PIM2 Power Source Matrix
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Figure B-60 Control System Decision Logic Diagram ACCI
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Figure B-61 Decision Matrix for ACCIIM (Discrete Actuator Signal)
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Figure B-62 Control System Decision Logic Diagram VAl
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Figure B-63 Decision Matrix for VAIMl (SVA Actuator)
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Figure B-64 Decision _atrix for VAIM2 (Effector Control Signal)
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Figure B-65 Decision Matrix For VAIH3 (Feedback)

Figure B-66 Control System Decision Logic Diagram BAI
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Figure B-67 Decision Matrix for BAIM (Bleed Actuator Discrete)
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PRATT & WHITNEYAIRCRAFT GROUP

Internal Correspondence

To John 9_ssett

From R.E. _ablnean Ext. 766S

Subject Ener_ Efficient Engine Control
System Cost & Weishc Comparisons
rich 9D kseline

Aususc 1, 1978

cc: W.B. Gardner

D. gray
J. Kuhlberg
i. Ovens
R. Zick_ol£

The Control Preliminary Definition work plan calls for quancificatlon of con-
Crol system cost, veight and reliability, end comparison of these values to

the "state of the art". The control system for the current JTgD engine has
been established as the basellne system for comparison. There are substantial

di_- ferences in the control system requirements, vhich result [n non-c_on,
and Chereforo non-comparable, system elements; i.e., the high efficiency
burner requires a substantially different metered fuel flov system than JTgD,

Zn order to provide a meaningful comparison, these elements, as listed belov,
will not be included:

Non-Common Elements

Thrust reverser acC_ttor and feedbacks
Purge System

Nitrogen rank
Ecolo_ rank
Purge and transfer valve

KP coupressor case cooling
HP cooling sir solenoid
Optical proxlmit7 sensor
Optical pyrometer

A couparison of system plu_blng and vicing yes not _ncluded in the study.
Pt_mblng and vlring is dependent on detailed system design, engine design, the

uu_er of control system elements required, and ocher factors beyond the scope
of thls study.

Coec and _eighc comparisons of the control system elements vhich are co=mort co
the Cvo systems, or comparable, are shorn in the attached Cables. Please
convert the Coral _ 's into _ DOC and _ fuel _sage for the Energy Efficient
engine.

1. E. hbineau
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ENERGYEFFICIENT ENGINE
CONTROLSYSTEM PRELIMINARY DEFINITION

WEIGHT COMPARISON

JT90 EEE
8aseltne System
System Wetght

C)ntrol System Component Weiqht kq (Ib) kq {Ib) Weiqht kq (Ib)

Fuel POmO 21.04 (4(.75) 8.55 (19) -12.4g (27.7S)
Fuel control 16.38 (36.4) 6.89_(15.3) -9.49 {21.12

TT2 0.68 (1.5) 0 -0.68 (1.5)
Altitude - - 0 0

Mn - - 0 O

Vine Control & Modulating 10.8 (24.0) 0 -10.8 (24.0)
B_e_l Control

Start Bleed Solenoid 0.86 (1.9) 0.68 (1.5) -0.18 (0.4)

Start Bleed Control 1.31 (2.9) 0 -1.31 (2.9)

Starer Vane Actuator 1.16 (4.8) 2.16 (4.82 0
LRC Bleed Actuator 1.56 (3.7) 1.64) (3.7) 0
Turbine Cooling Barometric 0.45 (1,0) 0 -0.45 (1.0)
Match

Turbine Case Cooling Valve 3.15 (7.0) 1.80 (4) -1.35 (3.0)
H= Compressor Case Cooling . - 5.40"(12) - -
Valve
Turbine Cooling Air Solenotd 0.86 (1.9) 0.68 (1.52 -0.19 (0.4)

HP Air Cooling Sole_id - - 0.68"(1.5) - -

Air/Fuel Heater 5.63 (12.5) 0 -5.63 (12.52
F_I Oe-lcing Valve 1.62 (3.6) 0 -1.$2 (3.6)
Pressure Diff. Switch 0.27 (0.6) 0 -0.27 (0.62

Pressurizing and Dump Valve 4,95 (11.0) 0 -4.)5 (II.0)
Purge and Transfer Valve - - 1.44* (3.2) - -

Cutoff and B)l)assValve - *
P_rn_ Cofltro! - -
Pilot Flo_metor - .

Main Floater - -

PZ 0

P3 0
SVA Feedback 1.26 (2.8)
Bleed Feedback 1.13"(2.5)

lYternatm" 00

Critlcal Proximity Sensor - -

NItrQgen Purge Tank and - -
Valvtng
(coloo_y tank - -
Thrust reverser actuator - -
and feedbacks

IBT Optlcal Pyl-ometer - -

Plu,d)Ing and Wiring - -

0.4S (1.02 _0.4$ (1.0)
0.4S (1.0) ,.0.46 (1.02
1.13 (2.5) ,1.13 (2.5)
1.13 (2.5) +1.13 (2.5)

0.11 (0.25) +0.11 (0.25)
0.Z3 (0.5) _0.23 (O.S)
0.05 (0.1) .1.21 (2.7)

. ° . .

0.4S (I.0) ,0.45 (1.0)
0.90 (2.0) _0.90 (2.0)

° °t . .

. ° . .

NOt AvetlaDle* - -

TOTALS

* - NOt trsded; therefore, not included in total.

_'* - Weight is average of H$0 and Bendlx.estimates.

-43.34 (96.3)

Comments

90 includes fitter

(3-data from aircraft

(3-data from aircraft;

9Q-not required
EJ-data from aircraft;

9_-not r_utred( -function of electronic

bx
E_-2-stage valve

(3-function of element
box

Not conmaraDle-not a 90

efl9ine function
E3-2 Stage Valve

Not c_arable-not a 90
engine function.
Eliminated in (J system
Eliminated tn (3 system
Eliminated in E3 system

Eliminated in E3 system
Not c_araOle-soecial

requirement of high

efficlency burner

Not required in 90 system
Not r_uired in gO SyStem
Not required in gO system

Part of 90 control

Not comoarable-( 3 not

modulated
Not required in 90 system
Not required in 90 system
NOt comparable-not a 90

engine requirement
Not co_,_arable-not a 90

engine requirement
Even trade if required

Not comDaraOle-not a 90
engine requirement

NOt c_arable-not a 90
engine requirement
Not comoared*dependent on
detailed system design,

engine design, total
function, and other factors

beyond the scope of this
study
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ENERGYEFFICIENT ENG|NE
CONTROLSYSTEMPRELIMINARY DEFINITZON

COST COMPARISONo BASED ON 1978 OOLLN_S

Cost From
8aseltne System

Control System Comoenent Oollars

Fuel _ + 3000
Fuel control . 14SOQ_
TT2 973
kltttude 0

Mn 0

Vane Control & Modulating - 18500
$1eed Control
Start 8lead Solenotd ÷ 315
Start 8lead Control - 800

Sector ¥elle Actuetor 0
LPC 8lead Actuatoe 0
Turbine Cooltng hroaetrtc 154
Mat_

Turbine Case Coollng Valve +
HP COmPressor Call Coollng . o,
Valve
Turblne Cooling Alr Solenold ÷ 315
HP Cooling Air Solenold . ..

Atr/Fuel Heater o 2_0
Fuel Oe-lclng Valve - 2050
Prossure Olff. Swttc_ - 338
Pressurizing & Oumo Valve 850

Purge and Transfer Valve . .*

Cutoff and Bypass VAlve " + 400
PummControl * 400

Pilot Floater ÷ 3000
Math Floater + 3OGQ
P? ÷ I00

A Feedb ack * 628
81eed Feedback ..

:_ternator : 3_0
70O

Critical PPoxtmity Sensor . **

Ptttrogen Purge Tent & Velvtng . .

[¢0 loa.y Tank . o

Thrust Reverse,- Actuator and *
Feedbacks
TIT O_ttcal P3_..mieter . ..

Plunmtng and Wtrtng . .

TOTALS - 28022 dollars

Coel_en ts

90 tm:ludes ?11tee

_3-dita from i|rcra_t

[3-data ?_om aircraft;
-nOt requi red
-data ?r_ a|rCrift;
-not required
*function of electronic

P:2-stage valve

[3-?unction of electronic
box

Not comparable-not a 90
engtne ?unction
E3*Z Stage Valve
Not Com)araOle-not a go
engine ?unctlon
Eliminated tn E3 system
Eliminated _n E3 system
Eliminated tn [3 system
El|mtnated tn E3 systm

Not comParable-special r_*
qutrment of Vorblx bur_er

NOt _eq'd. tn 90 system;

NOt requlred in 90 Systm
Not requtr_d in 90 systm
Part Of 90 control

NOt cmmarable.E3 not
modulated

Not required in 90 system
Not requlred tn 90 s_tm
Not c_para_le-not t 90
engine e_aulr_ment
Not comParaOle-not a 90
englrm requtremeflt
Even trade I? re<lulred
Not comparable.not a 90
englne requirement
Not c_ara_le-no& a 90
eflgtne requtrment
NO& cOhered-dependent on
detailed systm destgn, an-
gin_ deStgn, total ?unctlon
and other factors beyond the
scope of this study

NOTES: * . Not traded; therefore not _ncluded tn total
•"- Cost is average of HSO and 8endtx estimates

ORIGINAL PAGE IS

OF POOR QUALITY
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CONTROL SYSTEM BENEFITS TO
ENERGY EFFICIENT ENGINE

RELATIVE TO JT9D ENGINE

_WT =

_k cost =
-43.34 kg (96.3 Ibm)
28,022 dollars

Resultin_ Airplane Operatin_ Benefits_ P&WA Airplane*

% Fuel Burned

Tri. _uad.

_Wt = -43.34 kg/ENG
ACost = -28,020ENG

-0.08 -0.09

Total %4 -0.08 -0.09

% _ DOC

Tri. Quad.

-0.05 -0.05

-0.08 -0.08

-0.013 -0.13

*Typical Mission, Trijet: 1300 km (700 n. mi.)
Quadjet: 3700 km (2000 n. mi.)
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Control Component Location and Parametric Information
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